Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Thomas C. Baddeley, ${ }^{\text {a }}$ Simon M. Clow, ${ }^{\text {b }}$ Philip J. Cox, ${ }^{\text {b }}$ * Anna M. McLaughlin ${ }^{\text {b }}$ and James L. Wardell ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Aberdeen University, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and ${ }^{\mathbf{b}}$ School of Pharmacy, The Robert Gordon University, Schoolhill, Aberdeen AB10 1FR, Scotland

Correspondence e-mail: p.j.cox@rgu.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.040$
$w R$ factor $=0.096$
Data-to-parameter ratio $=9.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

α, α-Trehalose octaacetate ethyl acetate solvate

All hydroxy groups on the parent compound, trehalose, have been substituted with acetate groups and the solvent of recrystallization, ethyl acetate, has been incorporated into the crystal lattice to give the title compound, $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{19} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$.

Comment

Trehalose is implicated in the preservation of life without water (Branca et al., 1999) and it is used in certain drug formulations (Hatley \& Blair, 1999). The role of hydrogen bonding in trehalose and its derivatives is of continuing interest (Clow et al., 2001). Polymorphic forms of α, α-trehalose octaacetate monohydrate have been reported previously (Park \& Shin, 1993) and the crystal structure of sucrose octaacetate has been studied (Oliver \& Strickland, 1984). We now report the crystal structure of the α, α-trehalose octaacetate ethyl acetate solvate, (I) and base the stereochemistry of the molecule on the known absolute stereochemistry of trehalose.

(I)

No hydrogen bonds are present in (I). The substitution at $\mathrm{C} 1 / \mathrm{C} 1^{\prime}$ is α, α, with $\mathrm{C} 1-\mathrm{O} 1=\mathrm{C} 1^{\prime}-\mathrm{O} 1=1.416$ (3) \AA and $\mathrm{C} 1-$ $\mathrm{O} 1-\mathrm{C}^{\prime}=113.4(2)^{\circ}$. The absolute configuration is R at the C atoms $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 4$ and C 5 (also at $\mathrm{C}^{\prime}, \mathrm{C} 2^{\prime}, \mathrm{C} 4^{\prime}$ and $\mathrm{C} 5^{\prime}$) and S at C3 and C3'. The two six-membered rings adopt chair conformations with puckering parameters (Cremer \& Pople, 1975) calculated with PLATON (Spek, 1998) of $Q=$ $0.549(2) \AA, \theta=4.5(3)^{\circ}, \emptyset=14(3)^{\circ}$ (primed atoms) and $\mathrm{Q}=$ 0.563 (2) $\AA, \theta=4.3(3)^{\circ}$ and $\varnothing=106(4)^{\circ}$ (unprimed atoms).

Experimental

The title compound was prepared by reacting anhydrous α, α-trehalose with acetic anhydride. Purification was achieved through a combination of column chromatography and recrystallization from methanol. Crystals for X-ray work were obtained by slow evaporation from ethyl acetate.

Received 23 April 2001 Accepted 24 April 2001 Online 30 April 2001

Figure 1
The atomic arrangement in the title molecule. Displacement ellipsoids are shown at the 50% probability level.

Crystal data

$\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{19} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
$M_{r}=766.69$
Orthorhombic, $P_{2} 2_{1} 2_{1} 2_{1}$
$a=14.1406(1) \AA$
$b=15.2215(1) \AA$
$c=17.8879(2) \AA$
$V=3850.21(6) \AA^{3}$
$Z=4$
$D_{x}=1.323 \mathrm{Mg} \mathrm{m}^{-3}$

> Mo $K \alpha$ radiation
> Cell parameters from 4833 \quad reflections
> $\theta=2.0-27.3^{\circ}$
> $\mu=0.11 \mathrm{~mm}^{-1}$
> $T=150(2) \mathrm{K}$
> Prism, colourless
> $0.4 \times 0.3 \times 0.2 \mathrm{~mm}$

Data collection

Enraf-Nonius KappaCCD areadetector diffractometer
φ and ω scans to fill Ewald sphere
Absorption correction: multi-scan using multiple and symmetryrelated data measurements via the program SORTAV (Blessing, 1995)
$T_{\text {min }}=0.957, T_{\text {max }}=0.978$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.096$
$S=1.00$
4833 reflections
488 parameters

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 1^{\prime}$	$1.416(3)$	$\mathrm{O} 5-\mathrm{C} 5$	$1.438(3)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.416(3)$	$\mathrm{O}^{\prime}-\mathrm{C} 1^{\prime}$	$1.410(3)$
$\mathrm{O} 5-\mathrm{C} 1$	$1.415(3)$	$\mathrm{O}^{\prime}-\mathrm{C}^{\prime}$	$1.439(3)$
$\mathrm{C} 1^{\prime}-\mathrm{O} 1-\mathrm{C} 1$	$113.36(17)$	$\mathrm{O}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C} 2^{\prime}$	$105.02(18)$
$\mathrm{C} 1-\mathrm{O}-\mathrm{C} 5$	$113.81(19)$	$\mathrm{O}^{\prime}-\mathrm{C} 11^{\prime}-\mathrm{C} 12^{\prime}$	$127.2(3)$
$\mathrm{C} 1^{\prime}-\mathrm{O}^{\prime}-\mathrm{C}^{\prime}$	$113.63(17)$		

The H atoms were initially placed in calculated positions and thereafter allowed to ride on their attached atoms. Each H atom was given an equivalent isotropic displacement parameter 1.2 greater than the attached atom. The H atoms of the methyl groups were allowed to rotate about the local threefold axes to maximize the sum of the electron density at the calculated H -atom positions.

Data collection: DENZO (Otwinowski \& Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: $D E N Z O$ and $C O L L E C T$; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELX97-2 (Sheldrick, 1998); molecular graphics: ORTEP-3 (Farrugia, 1997).

We thank the EPSRC for use of the National Crystallographic Service at Southampton University (X-ray data collection) and for the use of the Chemical Database Service at Daresbury (Fletcher et al., 1996).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Branca, C., Magazu, S., Maisano, G. \& Migliardo, P. (1999). J. Chem. Phys. 111, 281-287.
Clow, S. M., Cox, P. J., Gilmore, G. I. \& Wardell, J. L. (2001). Acta Cryst. E57, o77-78.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fletcher, D. A., McMeeking, R. F. \& Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.
Hatley, H. M. \& Blair, J. A. (1999). J. Mol. Catal. B: Enzym. 7, 11-19.
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Oliver, J. D. \& Strickland, L. C. (1984). Acta Cryst. C40, 820-824.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326.
Park, Y. J. \& Shin, J. M. (1993). Bull. Korean Chem. Soc. 14, 200-206.
Sheldrick, G. M. (1998). SHELX97-2. University of Göttingen, Germany.
Spek, A. L. (1998). PLATON. Version of 16 December 1998. University of Utrecht, The Netherlands.

